Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Nov 18 2022 09:02:34
%S 1,1,3,4,10,13,26,35,66,88,150,202,331,442,688,919,1394,1848,2716,
%T 3590,5174,6796,9589,12542,17440,22680,31055,40208,54420,70096,93772,
%U 120256,159380,203436,267142,339573,442478,560050,724302,913198,1173375,1473622
%N EULER transform of A001511.
%C From _Gary W. Adamson_, Feb 11 2010: (Start)
%C Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...),
%C A(x) = (1 + x + 3x^2 + 4x^3 + 10x^4 + 13x^5 + ...),
%C A(x^2) = (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...), where A092119 = (1, 1, 3, 4, 10, ...) = Euler transform of the ruler sequence, A001511. (End)
%C Let M = triangle A173238 as an infinite lower triangular matrix. Then A092119 = lim_{n->infinity} M^n. Let P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + ...), and A(x) = polcoeff A092119. Then P(x) = A(x) / A(x^2), an example of a conjectured infinite set of operations (cf. A173238). - _Gary W. Adamson_, Feb 13 2010
%H Seiichi Manyama, <a href="/A092119/b092119.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f.: 1/Product_{k>=0} P(x^(2^k)) where P(x) = Product_{k>=1} (1 - x^k). - _Joerg Arndt_, Jun 21 2011
%p # Uses EulerTransform from A358369.
%p t := EulerTransform(n -> padic[ordp](2*n, 2)):
%p seq(t(n), n = 0..41); # _Peter Luschny_, Nov 18 2022
%t m = 42;
%t 1/Product[QPochhammer[x^(2^k)], {k, 0, Log[2, m]//Ceiling}] + O[x]^m // CoefficientList[#, x]& (* _Jean-François Alcover_, Jan 14 2020, after _Joerg Arndt_ *)
%o (PARI) N=66; x='x+O('x^N); /* that many terms */
%o gf=1/prod(e=0,ceil(log(N)/log(2)),eta(x^(2^e)));
%o Vec(gf) /* show terms */ /* _Joerg Arndt_, Jun 21 2011 */
%Y Cf. A000041. - _Gary W. Adamson_, Feb 11 2010
%Y Cf. A173241.
%K nonn
%O 0,3
%A _Vladeta Jovovic_, Mar 29 2004