login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173241
Euler transform of A051064, the ruler function sequence for k=3.
8
1, 1, 2, 4, 6, 9, 16, 22, 33, 51, 71, 100, 147, 199, 275, 384, 515, 692, 944, 1242, 1645, 2186, 2847, 3706, 4848, 6231, 8019, 10330, 13153, 16729, 21305, 26864, 33858, 42658, 53366, 66668, 83277, 103378, 128200, 158846, 195895, 241237, 296860, 363796, 445285, 544465, 663520
OFFSET
0,3
COMMENTS
Let P(x) = polcoeff A000041: (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...) and
A(x) = polcoeff A173241: (1 + x + 2x^2 + 4x^3 + 6x^4 + 9x^5 + ...); then
P(x) = A(x) / A(x^3).
A092119 = Euler transform of the ruler function for k=2: A001511.
LINKS
FORMULA
G.f.: 1/Product_{k>=0} P(x^(3^k)) where P(x)=Product_{k>=1} (1-x^k). - Joerg Arndt, Jun 21 2011
Euler transform of A051064, where A051064 = the ruler function for k=3:
(1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, ...).
EXAMPLE
Equals 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^7)*...); where in (1-x)^k, k = A051064: (1, 1, 2, 1, 1, 2, 1, 1, 3, ...).
PROG
(PARI) N=66; x='x+O('x^N); /* that many terms */
gf=1/prod(e=0, ceil(log(N)/log(3)), eta(x^(3^e)));
Vec(gf) /* show terms */ /* Joerg Arndt, Jun 21 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Feb 13 2010
EXTENSIONS
More terms from Joerg Arndt, Jun 21 2011
STATUS
approved