Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 29 2021 08:37:59
%S 1,1,2,4,6,9,16,22,33,51,71,100,147,199,275,384,515,692,944,1242,1645,
%T 2186,2847,3706,4848,6231,8019,10330,13153,16729,21305,26864,33858,
%U 42658,53366,66668,83277,103378,128200,158846,195895,241237,296860,363796,445285,544465,663520
%N Euler transform of A051064, the ruler function sequence for k=3.
%C Let P(x) = polcoeff A000041: (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...) and
%C A(x) = polcoeff A173241: (1 + x + 2x^2 + 4x^3 + 6x^4 + 9x^5 + ...); then
%C P(x) = A(x) / A(x^3).
%C A092119 = Euler transform of the ruler function for k=2: A001511.
%H Seiichi Manyama, <a href="/A173241/b173241.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: 1/Product_{k>=0} P(x^(3^k)) where P(x)=Product_{k>=1} (1-x^k). - _Joerg Arndt_, Jun 21 2011
%F Euler transform of A051064, where A051064 = the ruler function for k=3:
%F (1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, ...).
%e Equals 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^7)*...); where in (1-x)^k, k = A051064: (1, 1, 2, 1, 1, 2, 1, 1, 3, ...).
%o (PARI) N=66; x='x+O('x^N); /* that many terms */
%o gf=1/prod(e=0, ceil(log(N)/log(3)), eta(x^(3^e)));
%o Vec(gf) /* show terms */ /* _Joerg Arndt_, Jun 21 2011 */
%Y Cf. A000041, A001511, A051064, A092119, A173238, A173239.
%K nonn
%O 0,3
%A _Gary W. Adamson_, Feb 13 2010
%E More terms from _Joerg Arndt_, Jun 21 2011