login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092122
Let R_{k}(m) = the digit reversal of m in base k (R_{k}(m) is written in base 10). Sequence gives numbers m such that m = Sum_{d|m, d>1} R_{d}(m).
0
6, 154, 310, 370, 2829, 3526, 15320, 20462, 1164789, 4336106, 5782196, 145582972
OFFSET
1,1
EXAMPLE
m = 154 is a term: Sum_{d|154, d>1} R_{d}(154) = 89 + 10 + 34 + 11 + 7 + 2 + 1 = 154.
PROG
(Python)
from sympy import divisors
from sympy.ntheory import digits
def fd(d, b): return sum(di*b**i for i, di in enumerate(d[::-1]))
def R(k, n): return fd(digits(n, k)[1:][::-1], k)
def ok(n):
s = 0
for d in divisors(n, generator=True):
if d == 1: continue
s += R(d, n)
if s > n: return False
return n == s
print([k for k in range(1, 21000) if ok(k)]) # Michael S. Branicky, Nov 14 2022
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Naohiro Nomoto, Mar 30 2004
EXTENSIONS
a(9)-a(12) from Michael S. Branicky, Nov 14 2022
STATUS
approved