login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092124
a(0) = 2, a(n) = (2^(2^n)+2)*a(n-1) for n>0.
4
2, 12, 216, 55728, 3652301664, 15686516209310983872, 289365149921256212111714425927549504896, 98465858119637274097902770931519409290135390781788892125023848289699334298368
OFFSET
0,1
COMMENTS
In binary representation a(n) can be interpreted as an expression to represent n according to John von Neumann's definition of natural numbers: braces are coded as 1 and 0 and the empty set as 10={};
a(n) = (A001146(n)+2)*a(n-1) = 2*(A058891(n)+1)*a(n-1).
LINKS
EXAMPLE
a(3)=55728='1101100110110000' -> {{}{{}}{{}{{}}}} -> {{},{{}},{{},{{}}}} -> {0,{0},{0,{0}}} -> {0,1,{0,1}} -> {0,1,2} -> A001477(3)=3.
MATHEMATICA
RecurrenceTable[{a[0]==2, a[n]==(2^(2^n)+2)a[n-1]}, a, {n, 8}] (* Harvey P. Dale, Nov 15 2020 *)
nxt[{n_, a_}]:={n+1, (2^2^(n+1)+2)a}; NestList[nxt, {0, 2}, 8][[;; , 2]] (* Harvey P. Dale, Aug 11 2023 *)
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A092124(n): return ((1<<(1<<n))+2)*A092124(n-1) if n else 2 # Chai Wah Wu, Nov 23 2023
CROSSREFS
Sequence in context: A208651 A083667 A374871 * A009525 A009683 A132879
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 30 2004
STATUS
approved