login
A090909
Terms a(k) of A073869 for which a(k-1), a(k) and a(k+1) are distinct.
23
0, 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157, 159, 162
OFFSET
0,2
COMMENTS
Apart from the initial 0, is this the same as A001950? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
Identical to n + A066096(n)? - Ed Russell (times145(AT)hotmail.com), May 09 2009
LINKS
FORMULA
a(n) = floor(phi^2*n), where phi = (1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011
MATHEMATICA
(* First program *)
A002251= Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] -Total[#1]] &, {1}, Range[2, 500]] - 1; (* Birkas Gyorgy's code of A019444, modified *)
A090909= Join[{0}, Select[Partition[A002251, 2, 1], #[[2]] > #[[1]] &][[All, 2]]] (* G. C. Greubel, Sep 12 2023 *)
(* Second program *)
Floor[GoldenRatio^2*Range[0, 80]] (* G. C. Greubel, Sep 12 2023 *)
PROG
(Magma) [Floor((3+Sqrt(5))*n/2): n in [0..80]]; // G. C. Greubel, Sep 12 2023
(SageMath) [floor(golden_ratio^2*n) for n in range(81)] # G. C. Greubel, Sep 12 2023
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Dec 14 2003
EXTENSIONS
More terms from R. J. Mathar, Sep 29 2017
STATUS
approved