login
A089819
Number of subsets of {1,2,...,n} containing no primes.
8
2, 2, 2, 4, 4, 8, 8, 16, 32, 64, 64, 128, 128, 256, 512, 1024, 1024, 2048, 2048, 4096, 8192, 16384, 16384, 32768, 65536, 131072, 262144, 524288, 524288, 1048576, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 33554432, 67108864
OFFSET
1,1
COMMENTS
Equivalently, the number of subsets of {1,2,...,n} such that the product of the elements is square, where the empty set is defined to have a product of 1. - Peter Kagey, Nov 18 2017
FORMULA
a(n) = 2^(n-PrimePi(n)), with PrimePi = A000720.
a(n) = Product_{k=1..n} (2-A010051(k)) = A089818(n,0) = A000079(n) - A089820(n).
a(n) = 2^(1-A010051(n))*a(n-1). - Robert Israel, Nov 22 2017
EXAMPLE
a(6)=8 subsets of {1,2,3,4,5,6} contain no prime: {1,4,6}, {4,6}, {1,6}, {1,4}, {6}, {4}, {1} and the empty set.
a(7) = 8 as 2^(7 - PrimePi(7)) = 2^(7-4) = 8.
MAPLE
A089819:=n->2^(n-numtheory[pi](n)): seq(A089819(n), n=1..50); # Wesley Ivan Hurt, Nov 21 2017
MATHEMATICA
Table[2^(n - PrimePi[n]), {n, 50}] (* Wesley Ivan Hurt, Nov 18 2017 *)
PROG
(PARI) a(n)=2^(n-primepi(n)) \\ Charles R Greathouse IV, Apr 09 2012
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 12 2003
STATUS
approved