Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Dec 26 2017 18:08:30
%S 2,2,2,4,4,8,8,16,32,64,64,128,128,256,512,1024,1024,2048,2048,4096,
%T 8192,16384,16384,32768,65536,131072,262144,524288,524288,1048576,
%U 1048576,2097152,4194304,8388608,16777216,33554432,33554432,67108864
%N Number of subsets of {1,2,...,n} containing no primes.
%C Equivalently, the number of subsets of {1,2,...,n} such that the product of the elements is square, where the empty set is defined to have a product of 1. - _Peter Kagey_, Nov 18 2017
%H Robert Israel, <a href="/A089819/b089819.txt">Table of n, a(n) for n = 1..3853</a>
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%F a(n) = 2^(n-PrimePi(n)), with PrimePi = A000720.
%F a(n) = Product_{k=1..n} (2-A010051(k)) = A089818(n,0) = A000079(n) - A089820(n).
%F a(n) = 2^(1-A010051(n))*a(n-1). - _Robert Israel_, Nov 22 2017
%e a(6)=8 subsets of {1,2,3,4,5,6} contain no prime: {1,4,6}, {4,6}, {1,6}, {1,4}, {6}, {4}, {1} and the empty set.
%e a(7) = 8 as 2^(7 - PrimePi(7)) = 2^(7-4) = 8.
%p A089819:=n->2^(n-numtheory[pi](n)): seq(A089819(n), n=1..50); # _Wesley Ivan Hurt_, Nov 21 2017
%t Table[2^(n - PrimePi[n]), {n, 50}] (* _Wesley Ivan Hurt_, Nov 18 2017 *)
%o (PARI) a(n)=2^(n-primepi(n)) \\ _Charles R Greathouse IV_, Apr 09 2012
%Y Cf. A000079, A000720, A010051, A089818, A089820, A089821, A089822.
%K nonn,easy
%O 1,1
%A _Reinhard Zumkeller_, Nov 12 2003