OFFSET
0,2
COMMENTS
Partial sums of Chebyshev sequence S(n,5) = U(n,5/2) = A004254(n) (Chebyshev's polynomials of the second kind, see A049310). - Wolfdieter Lang, Aug 31 2004
In this sequence 4*a(n)*a(n+2)+1 is a square. - Bruno Berselli, Jun 19 2012
REFERENCES
R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., 58:2 (2020), 140-142.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
F. M. van Lamoen, Square wreaths around hexagons, Forum Geometricorum, 6 (2006) 311-325.
Index entries for linear recurrences with constant coefficients, signature (6,-6,1).
FORMULA
For n > 0, a(n-1) = Sum_{i=1..n} Sum_{j=1..i} b(n) with b(n) as in A004253.
a(n) = (2/3 - sqrt(21)/7)*(5/2 - sqrt(21)/2)^n + (2/3 + sqrt(21)/7)*(5/2 + sqrt(21)/2)^n - 1/3.
G.f.: 1/((1-x)*(1 - 5*x + x^2)) = 1/(1 - 6*x + 6*x^2 - x^3).
a(n) = 6*a(n-1) - 6*a(n-2) + a(n-3) for n >= 2, a(-1):=0, a(0)=1, a(1)=6.
a(n) = (S(n+1, 5) - S(n, 5) - 1)/3 for n >= 0.
a(n)*a(n-2) = a(n-1)*(a(n-1)-1) for n > 1. - Bruno Berselli, Nov 29 2016
MATHEMATICA
Join[{a=1, b=6}, Table[c=5*b-a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011*)
CoefficientList[Series[1/(1 - 6*x + 6*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Nov 20 2017 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -6, 6]^n*[1; 6; 30])[1, 1] \\ Charles R Greathouse IV, Nov 29 2016
(PARI) x='x+O('x^50); Vec(1/(1-6*x+6*x^2-x^3)) \\ G. C. Greubel, Nov 20 2017
(Magma) [Round((2/3 - Sqrt(21)/7)*(5/2 - Sqrt(21)/2)^n + (2/3 + Sqrt(21)/7)*(5/2 + Sqrt(21)/2)^n - 1/3): n in [0..30]]; // G. C. Greubel, Nov 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Nov 14 2003
STATUS
approved