This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088054 Factorial primes: primes which are within 1 of a factorial number. 3
 2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: 3 is the intersection of A002981 and A002982. LINKS R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012 Wikipedia, Factorial prime. C. Caldwell's The Top Twenty, Factorial Primes. EXAMPLE 3!+1=7; 7!-1=5039 39916801 is a term because 11!+1 is prime. MATHEMATICA t = {}; Do[ If[PrimeQ[n! - 1], AppendTo[t, n! - 1]]; If[PrimeQ[n! + 1], AppendTo[t, n! + 1]], {n, 50}]; t (* Robert G. Wilson v *) Union[Select[Range[50]!-1, PrimeQ], Select[Range[50]!+1, PrimeQ]] (Noe) fp[n_] := Module[{nf=n!}, Select[{nf-1, nf+1}, PrimeQ]]; Flatten[ Table[ fp[i], {i, 50}]] [From Harvey P. Dale, Dec. 18, 2010] CROSSREFS Cf. A000142, A002981, A002982. Union of A055490 and A088332. Sequence in context: A070029 A262339 A110094 * A249509 A085907 A024777 Adjacent sequences:  A088051 A088052 A088053 * A088055 A088056 A088057 KEYWORD easy,nice,nonn AUTHOR Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Nov 02 2003 EXTENSIONS Corrected by Paul Muljadi, Oct 11 2005 More terms from Robert G. Wilson v and T. D. Noe, Oct 12 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.