login
A262339
Exceptional primes for Ramanujan's tau function.
3
2, 3, 5, 7, 23, 691
OFFSET
1,1
COMMENTS
For each exceptional prime p, Ramanujan's tau function tau(n) = A000594(n) satisfies a simple congruence modulo p.
The main entry for this subject is A000594.
Terms 23 and 691 also appear in A193855. - Jud McCranie, Nov 05 2020
REFERENCES
H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
LINKS
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
EXAMPLE
691 is an exceptional prime because tau(n) == sum of 11th power of divisors of n mod 691 (see A046694).
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Jonathan Sondow, Sep 18 2015
STATUS
approved