login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368805
Primes whose digits are prime in both base 9 and base 10.
0
2, 3, 5, 7, 23, 227, 277, 2777, 5333, 5573, 23537, 23753, 25373, 225527, 25737557, 27775337, 27775357, 35275777, 35277233, 37333757, 227773753, 227775533, 232372577, 233752577, 252777737, 337777277, 25322233723, 25322237323, 25322237357, 25322237723, 25322327753, 25322327777, 25322532523
OFFSET
1,1
COMMENTS
Subsequence of A019546.
EXAMPLE
2777 is in this sequence because it is prime, all its digits are prime and 2777 in base 9 is 3725, whose digits are all prime.
MATHEMATICA
Select[Range[2.1*10^7], PrimeQ[#]&&AllTrue[IntegerDigits[#], PrimeQ]&&AllTrue[IntegerDigits[#, 9], PrimeQ]&] (* or *)
seq1[dignum_, b_] := Module[{s = {}}, Do[s = Join[s, Select[FromDigits[#, b] & /@ Tuples[{2, 3, 5, 7}, k], PrimeQ]], {k, 1, dignum}]; s]; seq[maxdig9_] := Select[Intersection[seq1[maxdig9, 9], seq1[maxdig9, 10]], # <= 9^maxdig9 &]; seq[11] (* Amiram Eldar, Jan 06 2024 *)
PROG
(Python)
from gmpy2 import digits, is_prime
from itertools import count, islice, product
def bgen():
yield from [2, 3, 5, 7]
for d in count(2):
for f in product("2357", repeat=d-1):
for last in "37":
yield int("".join(f)+last)
def agen(): yield from (t for t in bgen() if is_prime(t) and set(digits(t, 9)) <= set("2357"))
print(list(islice(agen(), 33))) # Michael S. Branicky, Jan 07 2024
CROSSREFS
Sequence in context: A343834 A070029 A360497 * A262339 A110094 A088054
KEYWORD
nonn,base
AUTHOR
James C. McMahon, Jan 06 2024
STATUS
approved