login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086223
Every integer can be represented uniquely as m = k*2^(j+1)+2^j-1. Sequence gives values of k for m = repunit(n).
1
0, 1, 3, 69, 694, 6944, 69444, 694444, 6944444, 69444444, 694444444, 6944444444, 69444444444, 694444444444, 6944444444444, 69444444444444, 694444444444444, 6944444444444444, 69444444444444444, 694444444444444444
OFFSET
1,3
COMMENTS
j = A007814(m+1).
FORMULA
a(n) = A025480(A002275(n)).
G.f.: -x^2*(35*x^3-46*x^2+8*x-1) / ((x-1)*(10*x-1)). - Colin Barker, Apr 29 2015
a(n) = (125*10^(n-3)-8)/18 for n >= 4. - Robert Israel, Apr 29 2015
a(n) = 11*a(n-1)-10*a(n-2) for n>5.
EXAMPLE
1 = 0*4+1; 11 = 1*8+3; 111 = 3*32+15.
For n > 3, repunit(n) = [69*10^(n-4)+(10^(n-4)-1)*4/9]*16+7.
MATHEMATICA
CoefficientList[Series[x (35 x^3 - 46 x^2 + 8 x - 1)/((1 - x)(10 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 30 2015 *)
PROG
(PARI) concat(0, Vec(-x^2*(35*x^3-46*x^2+8*x-1)/((x-1)*(10*x-1)) + O(x^100))) \\ Colin Barker, Apr 30 2015
(Magma) [0, 1, 3] cat [(125*10^(n-3)-8)/18: n in [4..25]]; // Vincenzo Librandi, Apr 30 2015
(Python)
def A086223(n): return (-(k:=(m:=(10**n-1)//9)&~(m+1))+m+1)//((k+1)<<1) # Chai Wah Wu, Jul 07 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Marco Matosic, Jul 27 2003
EXTENSIONS
Edited and extended by David Wasserman, Feb 17 2005
STATUS
approved