login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086222
a(n) = card{ (x,y,z) | x <= y <= z and lcm(x,y,z) = n }.
5
1, 3, 3, 6, 3, 13, 3, 10, 6, 13, 3, 30, 3, 13, 13, 15, 3, 30, 3, 30, 13, 13, 3, 54, 6, 13, 10, 30, 3, 71, 3, 21, 13, 13, 13, 73, 3, 13, 13, 54, 3, 71, 3, 30, 30, 13, 3, 85, 6, 30, 13, 30, 3, 54, 13, 54, 13, 13, 3, 178, 3, 13, 30, 28, 13, 71, 3, 30, 13, 71, 3, 135, 3, 13, 30, 30, 13, 71, 3
OFFSET
1,2
COMMENTS
A number of conjectures are possible, many of which should be easy to prove. Examples: (1) If n is a product of two primes then a(n)=13. (2) If n is a square of a prime then a(n)=6. - John W. Layman, Sep 01 2003
LINKS
FORMULA
For a prime p, a(p) = 3.
a(n) = (A070919(n) + 3*A048691(n) + 2)/6. - Vladeta Jovovic, Dec 01 2004
MATHEMATICA
f1[p_, e_] := (e+1)^3 - e^3; f2[p_, e_] := 2*e + 1; a[1] = 1; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + 3 * Times @@ f2 @@@f + 2) / 6; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
PROG
(PARI)
A048691(n) = numdiv(n^2);
A070919(n) = sumdiv(n, d, (numdiv(d)^3)*moebius(n/d));
A086222(n) = ((A070919(n)+3*A048691(n)+2)/6); \\ Antti Karttunen, May 19 2017, after Jovovic's formula.
(PARI) a(n) = {my(e = factor(n)[, 2]); (vecprod(apply(x->(x+1)^3-x^3, e)) + 3*vecprod(apply(x->2*x+1, e)) + 2) / 6; } \\ Amiram Eldar, Sep 03 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
EXTENSIONS
More terms from John W. Layman, Sep 01 2003
STATUS
approved