login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = card{ (x,y,z) | x <= y <= z and lcm(x,y,z) = n }.
5

%I #18 Sep 03 2023 08:44:52

%S 1,3,3,6,3,13,3,10,6,13,3,30,3,13,13,15,3,30,3,30,13,13,3,54,6,13,10,

%T 30,3,71,3,21,13,13,13,73,3,13,13,54,3,71,3,30,30,13,3,85,6,30,13,30,

%U 3,54,13,54,13,13,3,178,3,13,30,28,13,71,3,30,13,71,3,135,3,13,30,30,13,71,3

%N a(n) = card{ (x,y,z) | x <= y <= z and lcm(x,y,z) = n }.

%C A number of conjectures are possible, many of which should be easy to prove. Examples: (1) If n is a product of two primes then a(n)=13. (2) If n is a square of a prime then a(n)=6. - _John W. Layman_, Sep 01 2003

%H Antti Karttunen, <a href="/A086222/b086222.txt">Table of n, a(n) for n = 1..10000</a>

%F For a prime p, a(p) = 3.

%F a(n) = (A070919(n) + 3*A048691(n) + 2)/6. - _Vladeta Jovovic_, Dec 01 2004

%t f1[p_, e_] := (e+1)^3 - e^3; f2[p_, e_] := 2*e + 1; a[1] = 1; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + 3 * Times @@ f2 @@@f + 2) / 6; Array[a, 100] (* _Amiram Eldar_, Sep 03 2023 *)

%o (PARI)

%o A048691(n) = numdiv(n^2);

%o A070919(n) = sumdiv(n, d, (numdiv(d)^3)*moebius(n/d));

%o A086222(n) = ((A070919(n)+3*A048691(n)+2)/6); \\ _Antti Karttunen_, May 19 2017, after Jovovic's formula.

%o (PARI) a(n) = {my(e = factor(n)[, 2]); (vecprod(apply(x->(x+1)^3-x^3, e)) + 3*vecprod(apply(x->2*x+1, e)) + 2) / 6;} \\ _Amiram Eldar_, Sep 03 2023

%Y Cf. A048691, A070919, A018892, A086165.

%K nonn,easy

%O 1,2

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003

%E More terms from _John W. Layman_, Sep 01 2003