The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120909 Triangle read by rows: T(n,k) is the number of ternary words of length n having k runs (i.e., subwords of maximal length) of identical letters (1 <= k <= n). 1
 3, 3, 6, 3, 12, 12, 3, 18, 36, 24, 3, 24, 72, 96, 48, 3, 30, 120, 240, 240, 96, 3, 36, 180, 480, 720, 576, 192, 3, 42, 252, 840, 1680, 2016, 1344, 384, 3, 48, 336, 1344, 3360, 5376, 5376, 3072, 768, 3, 54, 432, 2016, 6048, 12096, 16128, 13824, 6912, 1536, 3, 60 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums are the powers of 3 (A000244). LINKS FORMULA T(n,k) = 3*2^(k-1)*binomial(n-1,k-1). G(t,z) = 3*t*z/(1-z-2*t*z). T(n,k) = 3*A013609(n-1,k-1). T(n,k) = A120910(n,n-k). Sum_{k>=1} k*T(n,k) = 3*A081038(n-1). EXAMPLE T(3,2)=12 because we have 001,002,011,022,100,110,112,122,200,211,220 and 221. Triangle starts:   3;   3,  6;   3, 12, 12;   3, 18, 36, 24;   3, 24, 72, 96, 48; MAPLE T:=(n, k)->3*2^(k-1)*binomial(n-1, k-1): for n from 1 to 11 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form MATHEMATICA nn=15; f[list_]:=Select[list, #>0&]; a=y x/(1-x) +1; b=a^2/(1-(a-1)^2 ); Drop[Map[f, CoefficientList[Series[b a/(1-(a-1)(b-1)), {x, 0, nn}], {x, y}]], 1]//Grid  (* Geoffrey Critzer, Nov 20 2012 *) CROSSREFS Cf. A000244, A013609, A120910. Sequence in context: A323349 A307982 A339335 * A086222 A278663 A086492 Adjacent sequences:  A120906 A120907 A120908 * A120910 A120911 A120912 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Jul 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 04:31 EST 2021. Contains 349400 sequences. (Running on oeis4.)