login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284058
Numbers k such that {k + 2, k + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs.
1
1, 3, 69, 1719, 3555, 8535, 8625, 9765, 10065, 17955, 27939, 32319, 34209, 35445, 39159, 44769, 47415, 55329, 56235, 75615, 85929, 91965, 96219, 97545, 98895, 122385, 122595, 138075, 142695, 143649, 145719, 152025, 191829, 192975, 197955, 200379, 201819, 202059
OFFSET
1,2
COMMENTS
After a(1), all the terms are multiples of 3.
After a(2), all the terms are congruent to 5 or 9 (mod 10).
a(n) == {9 or 15} (mod 30) for n>2. - Robert G. Wilson v, Mar 19 2017
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2352 from Robert G. Wilson v)
EXAMPLE
a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs.
a(3) = 69, {69 + 2 = 71, 69 + 4 = 73} and {69^3 + 2 = 328511, 69^3 + 4 = 328513} are twin prime pairs.
MATHEMATICA
Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &]
PROG
(PARI) for(n=1, 100000, 2; if(isprime(n+2) && isprime(n+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", ")))
CROSSREFS
Intersection of A256388 and A178337.
Sequence in context: A086223 A089455 A012201 * A012096 A012074 A350720
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Mar 19 2017
STATUS
approved