login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144953
Primes of form n^3 + 2.
16
2, 3, 29, 127, 24391, 91127, 250049, 274627, 328511, 357913, 571789, 1157627, 1442899, 1860869, 2146691, 2924209, 3581579, 5000213, 5177719, 6751271, 9129331, 9938377, 10503461, 12326393, 14348909, 14706127, 15438251, 18191449
OFFSET
1,1
COMMENTS
The Hardy-Littlewood conjecture K (p. 51) suggests that this sequence is infinite and gives an asymptotic estimate for the density of this sequence. - Charles R Greathouse IV, Jul 06 2010
LINKS
Vincenzo Librandi and Robert Israel, Table of n, a(n) for n = 1..10000 (first 2900 terms from Vincenzo Librandi)
G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math., Vol. 44, No. 1 (1923), pp. 1-70.
FORMULA
a(n) = A067200(n)^3 + 2. - Zak Seidov, Sep 16 2013
MAPLE
N:= 10000: # number of terms desired
R[1]:= 2: count:= 1:
for n from 1 by 2 while count < N do
p:= n^3+2;
if isprime(p) then
count:= count+1;
R[count]:= p;
end if
end do:
seq(R[n], n=1..N); # Robert Israel, Jan 29 2013
MATHEMATICA
lst={}; Do[s=n^3; If[PrimeQ[p=s+2], AppendTo[lst, p]], {n, 6!}]; lst
A144953={2}; Do[If[PrimeQ[p=n^3+2], AppendTo[A144953, p]], {n, 1, 10^5, 2}]; A144953 (* Zak Seidov, Nov 05 2008 *)
Select[Table[n^3+2, {n, 0, 7000}], PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
PROG
(PARI) for(n=0, 1e3, if(isprime(k=n^3+2), print1(k", "))) \\ Charles R Greathouse IV, Jul 06 2010
(Magma) [a: n in [0..800] | IsPrime(a) where a is n^3+2]; // Vincenzo Librandi, Nov 30 2011
CROSSREFS
Cf. A067200.
Sequence in context: A116325 A228021 A053998 * A132282 A064893 A141514
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(1)=2 from Zak Seidov, Nov 05 2008
Reference and index correction from Charles R Greathouse IV, Jul 06 2010
STATUS
approved