login
A085307
a(1) = 1; for n > 1, concatenate distinct prime factors of n in decreasing order.
7
1, 2, 3, 2, 5, 32, 7, 2, 3, 52, 11, 32, 13, 72, 53, 2, 17, 32, 19, 52, 73, 112, 23, 32, 5, 132, 3, 72, 29, 532, 31, 2, 113, 172, 75, 32, 37, 192, 133, 52, 41, 732, 43, 112, 53, 232, 47, 32, 7, 52, 173, 132, 53, 32, 115, 72, 193, 292, 59, 532, 61, 312, 73, 2, 135, 1132, 67
OFFSET
1,2
COMMENTS
n and a(n) have the same parity.
LINKS
FORMULA
Algorithm:
1. factorize n;
2. order prime factors by decreasing size;
3. concatenate prime factors and interpret the result as a decimal number.
EXAMPLE
m = 100 = 2*2*5*5 -> {2,5} -> {5,2} -> 52 = a(100);
a(510510) = 1713117532, while A084317(510510) = 2357111317.
MAPLE
with(numtheory):
a:= n-> parse(cat(`if`(n=1, 1, sort([factorset(n)[]], `>`)[]))):
seq(a(n), n=1..100); # Alois P. Heinz, May 02 2016
MATHEMATICA
f[n_] := FromDigits[ Flatten[ IntegerDigits /@ Reverse[ Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]]]]; Table[ f[n], {n, 1, 70}]
Table[FromDigits[Flatten[IntegerDigits/@Reverse[FactorInteger[n][[All, 1]]]]], {n, 90}] (* Harvey P. Dale, Oct 10 2017 *)
CROSSREFS
In A084317 the order of factors is increasing.
Sequence in context: A361320 A037279 A163591 * A361581 A361580 A353975
KEYWORD
base,look,nonn
AUTHOR
Labos Elemer, Jun 27 2003
EXTENSIONS
Edited by Robert G. Wilson v, Jul 15 2003
STATUS
approved