OFFSET
1,2
FORMULA
Algorithm:
1. factorize n;
2. arrange prime factors by decreasing size;
3. concatenate prime factors and interpret the result as a decimal number.
EXAMPLE
n=even: remains even: m = 100 = 2*2*5*5 -> {2,5} -> {5,2} -> 52 = a(100);
n = 2^i*3^j: a(n)=2 since iteration list is {n,32,2}; these
are the known convergent even cases of initial value.
n=143: a(143) = 44864859110711 because the iteration list is
{143, 1311, 23193, 8593, 66113, 388917, 547793, 2273241, 55311373, 989474313, 8914183373, 84859143973, 528059391607, 44864859110711};
a(n) = 0 for n = 213, 323, 639, 713 ending in {713, 3123, 3473, 15123}; terminal orbit of length = 4.
All possible cases occur: fixed point, divergence, terminal cycle.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] lf[x_] := Length[FactorInteger[x]] nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] rec[x_] := Fold[nd, 0, Flatten[IntegerDigits[Reverse[ba[x]]], 1]] Table[rec[w], {w, 1, 128}]
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Jun 27 2003
STATUS
approved