login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361581
If n is composite, replace n with the concatenation of its nontrivial divisors, written in decreasing order, each divisor being written in base 10 with its digits in reverse order, otherwise a(n) = n.
0
1, 2, 3, 2, 5, 32, 7, 42, 3, 52, 11, 6432, 13, 72, 53, 842, 17, 9632, 19, 1542, 73, 112, 23, 2186432, 5, 312, 93, 41742, 29, 51016532, 31, 61842, 113, 712, 75, 812196432, 37, 912, 313, 2018542, 41, 12417632, 43, 221142, 51953, 322, 47, 42612186432, 7, 520152
OFFSET
1,2
EXAMPLE
Nontrivial divisors of 20 are 2,4,5,10, so a(20)=1542.
PROG
(PARI) a(n) = if (isprime(n) || (n==1), n, my(d=divisors(n)); my(s=""); forstep(k=#d-1, 2, -1, my(dk = digits(d[k])); for (i=1, #dk, s=concat(s, Str(dk[#dk-i+1])))); eval(s)); \\ Michel Marcus, Mar 16 2023
(Python)
from sympy import divisors, isprime
def a(n):
if n == 1 or isprime(n): return n
return int("".join(str(d)[::-1] for d in divisors(n)[-2:0:-1]))
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Mar 21 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Tyler Busby, Mar 16 2023
STATUS
approved