OFFSET
1,2
FORMULA
a(p) = p for prime p.
EXAMPLE
Initial terms of the successive Dirichlet self-convolutions begin:
(1),2,3,-2,5,-24,7,-20,-27,-80,11,-54,13,-168,-195,-394,...
1,(4),6,0,10,-36,14,-48,-45,-140,22,-216,26,-308,-360,-864,...
1,6,(9),6,15,-36,21,-76,-54,-180,33,-450,39,-420,-495,-1434,...
1,8,12,(16),20,-24,28,-96,-54,-200,44,-720,52,-504,-600,-2112,...
1,10,15,30,(25),0,35,-100,-45,-200,55,-990,65,-560,-675,-2890,...
1,12,18,48,30,(36),42,-80,-27,-180,66,-1224,78,-588,-720,-3744,...
1,14,21,70,35,84,(49),-28,0,-140,77,-1386,91,-588,-735,-4634,...
1,16,24,96,40,144,56,(64),36,-80,88,-1440,104,-560,-720,-5504,...
1,18,27,126,45,216,63,204,(81),0,99,-1350,117,-504,-675,-6282,...
1,20,30,160,50,300,70,400,135,(100),110,-1080,130,-420,-600,-6880,...
1,22,33,198,55,396,77,660,198,220,(121),-594,143,-308,-495,-7194,...
1,24,36,240,60,504,84,992,270,360,132,(144),156,-168,-360,-7104,...
...
where the main diagonal forms the squares.
PROG
(PARI) {a(n, m)=if(m==0, 0^n, if(m==1, A[n], sumdiv(n, d, a(d, 1)*a(n/d, m-1))))}
A=[1]; print1(A[1], ", "); for(n=2, 47, A=concat(A, 0); print1(A[n]=n-a(n, n)/n, ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 01 2009
STATUS
approved