login
A163593
Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
1
1, 34, 1122, 37026, 1221858, 40320753, 1330566336, 43908078720, 1448946455616, 47814568344576, 1577858820890352, 52068617261591040, 1718240483647446528, 56701147733816154624, 1871111864101388705280, 61745833160498214613248
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170753, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^5 - 32*t^4 - 32*t^3 - 32*t^2 - 32*t + 1).
a(n) = 32*a(n-1)+32*a(n-2)+32*a(n-3)+32*a(n-4)-528*a(n-5). - Wesley Ivan Hurt, May 11 2021
MATHEMATICA
coxG[{5, 528, -32}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 04 2016 *)
CoefficientList[Series[(1+x)*(1-x^5)/(1-33*x+560*x^5-528*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 29 2017 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-33*x+560*x^5-528*x^6)) \\ G. C. Greubel, Jul 29 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-33*x+560*x^5-528*x^6) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^5)/(1-33*x+560*x^5-528*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A214241 A162838 A163217 * A164050 A164670 A165166
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved