login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084081
Sum of lists created by n substitutions k -> Range[k+1,0,-2] starting with {0}, counting down from k+1 to 0 step -2.
3
0, 1, 2, 5, 10, 24, 50, 121, 260, 637, 1400, 3468, 7752, 19380, 43890, 110561, 253000, 641355, 1480050, 3771885, 8765250, 22439040, 52451256, 134796060, 316663760, 816540124, 1926501200, 4982228488, 11798983280, 30593078076, 72690164850
OFFSET
0,3
COMMENTS
Lengths of lists is A047749.
LINKS
FORMULA
Equals A093951(n) - A047749(n).
From G. C. Greubel, Oct 17 2022: (Start)
a(2*n+1) = (3*n-1)*binomial[3*n+1, n]/((n+1)*(3*n+1)).
a(2*n) = 10*binomial(3*n+1, n-1)/(2*n+3). (End)
EXAMPLE
Lists {0}, {1}, {2, 0}, {3, 1, 1}, {4, 2, 0, 2, 0, 2, 0} sum to 0, 1, 2, 5, 10.
MATHEMATICA
Plus@@@Flatten/@NestList[ # /. k_Integer :> Range[k+1, 0, -2]&, {0}, 8]
A084081[n_]:= If[EvenQ[n], 10*Binomial[(3*n+2)/2, (n-2)/2]/(n+3), 2*(3*n + 1)*Binomial[(3*n+5)/2, (n+1)/2]/((n+3)*(3*n+5))];
Table[A084081[n], {n, 40}] (* G. C. Greubel, Oct 17 2022 *)
PROG
(Magma)
F:=Floor; B:=Binomial;
function A084081(n)
if (n mod 2) eq 0 then return 10*B(F((3*n+2)/2), F((n-2)/2))/(n+3);
else return 2*(3*n+1)*B(F((3*n+5)/2), F((n+1)/2))/((n+3)*(3*n+5));
end if; return A084081;
end function;
[A084081(n): n in [0..40]]; // G. C. Greubel, Oct 17 2022
(SageMath)
def A084081(n):
if (n%2==0): return 10*binomial(int((3*n+2)/2), int((n-2)/2))/(n+3)
else: return 2*(3*n+1)*binomial(int((3*n+5)/2), int((n+1)/2))/((n+3)*(3*n+5))
[A084081(n) for n in range(40)] # G. C. Greubel, Oct 17 2022
CROSSREFS
Sequence in context: A291247 A316697 A032170 * A106376 A359068 A151514
KEYWORD
nonn
AUTHOR
Wouter Meeussen, May 11 2003
STATUS
approved