%I #9 Oct 18 2022 16:36:57
%S 0,1,2,5,10,24,50,121,260,637,1400,3468,7752,19380,43890,110561,
%T 253000,641355,1480050,3771885,8765250,22439040,52451256,134796060,
%U 316663760,816540124,1926501200,4982228488,11798983280,30593078076,72690164850
%N Sum of lists created by n substitutions k -> Range[k+1,0,-2] starting with {0}, counting down from k+1 to 0 step -2.
%C Lengths of lists is A047749.
%H G. C. Greubel, <a href="/A084081/b084081.txt">Table of n, a(n) for n = 0..1000</a>
%F Equals A093951(n) - A047749(n).
%F From _G. C. Greubel_, Oct 17 2022: (Start)
%F a(2*n+1) = (3*n-1)*binomial[3*n+1, n]/((n+1)*(3*n+1)).
%F a(2*n) = 10*binomial(3*n+1, n-1)/(2*n+3). (End)
%e Lists {0}, {1}, {2, 0}, {3, 1, 1}, {4, 2, 0, 2, 0, 2, 0} sum to 0, 1, 2, 5, 10.
%t Plus@@@Flatten/@NestList[ # /. k_Integer :> Range[k+1, 0, -2]&, {0}, 8]
%t A084081[n_]:= If[EvenQ[n], 10*Binomial[(3*n+2)/2, (n-2)/2]/(n+3), 2*(3*n + 1)*Binomial[(3*n+5)/2, (n+1)/2]/((n+3)*(3*n+5))];
%t Table[A084081[n], {n, 40}] (* _G. C. Greubel_, Oct 17 2022 *)
%o (Magma)
%o F:=Floor; B:=Binomial;
%o function A084081(n)
%o if (n mod 2) eq 0 then return 10*B(F((3*n+2)/2), F((n-2)/2))/(n+3);
%o else return 2*(3*n+1)*B(F((3*n+5)/2), F((n+1)/2))/((n+3)*(3*n+5));
%o end if; return A084081;
%o end function;
%o [A084081(n): n in [0..40]]; // _G. C. Greubel_, Oct 17 2022
%o (SageMath)
%o def A084081(n):
%o if (n%2==0): return 10*binomial(int((3*n+2)/2), int((n-2)/2))/(n+3)
%o else: return 2*(3*n+1)*binomial(int((3*n+5)/2), int((n+1)/2))/((n+3)*(3*n+5))
%o [A084081(n) for n in range(40)] # _G. C. Greubel_, Oct 17 2022
%Y Cf. A047749, A093951.
%K nonn
%O 0,3
%A _Wouter Meeussen_, May 11 2003