login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291247
p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^2 - S^3 + S^4.
2
1, 2, 5, 10, 24, 49, 112, 238, 526, 1142, 2491, 5442, 11842, 25873, 56344, 122975, 268042, 584633, 1274820, 2779895, 6062306, 13219186, 28827703, 62861754, 137082358, 298927682, 651861824, 1421488867, 3099781932, 6759580078, 14740333285, 32143687954
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.
LINKS
FORMULA
G.f.: (1 + x - 2 x^2 - 3 x^3 + 2 x^4 + x^5 - x^6)/(1 - x - 5 x^2 + 2 x^3 + 9 x^4 - 2 x^5 - 5 x^6 + x^7 + x^8).
a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 9*a(n-4) + 2*a(n-5) + 5*a(n-6) - a(n-7) - a(n-8) for n >= 9.
MATHEMATICA
z = 60; s = x/(1 - x^2); p = 1 - s - s^2 - s^3 + s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291247 *)
CROSSREFS
Sequence in context: A299436 A049937 A026754 * A316697 A032170 A084081
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 29 2017
STATUS
approved