OFFSET
1,1
COMMENTS
Column sums of A106375.
FORMULA
See the Maple program where a recurrence relation for the triangle A106375(n, k) is given; a(k) is the sum of the terms in column k of this triangle.
EXAMPLE
a(3)=10 because we have eight paths of length 3 (each edge can have two orientations) and two trees in the shape of the letter Y (the bottom edge can have two orientations).
MAPLE
a:=proc(n, k) if n=1 and k=1 then 2 elif n=1 and k=2 then 1 elif n=1 then 0 elif k=1 then 0 else 2*a(n-1, k-1) + add(a(n-1, j)*a(n-1, k-2-j), j=1..k-3) fi end: seq(add(a(n, k), n=1..k), k=1..15); # a(n, k)=A106375(n, k)
MATHEMATICA
A[n_, k_] := A[n, k] = Which[
n == 1 && k == 1, 2,
n == 1 && k == 2, 1,
n == 1, 0,
k == 1, 0,
True, 2*A[n-1, k-1] + Sum[A[n-1, j]*A[n-1, k-2-j], {j, 1, k-3}]];
a[k_] := Sum[A[n, k], {n, 1, k}];
Table[a[k], {k, 1, 28}] (* Jean-François Alcover, Sep 21 2024, after Maple program *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 05 2005
STATUS
approved