The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082410 a(1)=0. Thereafter, the sequence is constructed using the rule: for any k >= 0, if a(1), a(2), ..., a(2^k+1) are known, the next 2^k terms are given as follows: a(2^k+1+i) = 1 - a(2^k+1-i) for 1 <= i <= 2^k. 11
 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is A014577 shifted right twice (the definition here is similar to one of the constructions for A034947). - N. J. A. Sloane, Jul 27 2012 Complement of characteristic function of A060833. From Tanya Khovanova, Apr 21 2020: (Start) Suppose you have a deck of cards face down with 2^n cards such that the color pattern corresponds to this sequence: 0 for one color, 1 for the other. Then you proceed in the following manner: transfer to top card to the bottom of the deck, deal the next card, then repeat. The dealt cards will have alternating colors. Even terms of this sequence alternate: 1, 0, 1, 0 and so on. Removing even-indexed terms doesn't change the sequence. (End) LINKS FORMULA For n >= 2, Sum_{k=1..n} a(k) = (n + A037834(n-1))/2. a(1) = 0, a(4*n+2) = 1, a(4*n+4) = 0, a(2*n+1) = a(n+1) for n >= 0. - A.H.M. Smeets, Jul 27 2018 EXAMPLE 3 first terms are 0,1,1; therefore, a(4) = a(3+1) = 1 - a(3-1) = 1 - a(2) = 0, a(5) = a(3+2) = 1 - a(3-2) = 1 - a(1) = 1 and the sequence begins 0, 1, 1, 0, 1, ... CROSSREFS The following are all essentially the same sequence: A014577, A014707, A014709, A014710, A034947, A038189, A082410. - N. J. A. Sloane, Jul 27 2012 Sequence in context: A286400 A288478 A225183 * A189479 A260394 A181932 Adjacent sequences:  A082407 A082408 A082409 * A082411 A082412 A082413 KEYWORD nonn AUTHOR Benoit Cloitre, Apr 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 17:16 EDT 2020. Contains 337291 sequences. (Running on oeis4.)