login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014707 a(4n) = 0, a(4n+2) = 1, a(2n+1) = a(n). 22
0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The regular paper-folding (or dragon curve) sequence.
It appears that the sequence of run lengths is A088431. - Dimitri Hendriks, May 06 2010
Runs of three consecutive ones appear around positions n = 22, 46, 54, 86, 94, 118, 150, 174, 182, ..., or for n of the form 2^(k+3)*(4*t+3)-2, k >= 0, t >= 0. - Vladimir Shevelev, Mar 19 2011
REFERENCES
G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
LINKS
J.-P. Allouche, M. Mendes France, A. Lubiw, A. J. van der Poorten and J. Shallit, Convergents of folded continued fractions, Acta Arithmetica 77 (1996), 77-96.
Cristina Ballantine and George Beck, Partitions enumerated by self-similar sequences, arXiv:2303.11493 [math.CO], 2023.
Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
G. J. Endrullis, D. Hendriks and J. W. Klop, Degrees of streams, see table 1 "PF".
G. Melançon, Lyndon factorization of infinite words, STACS 96 (Grenoble, 1996), 147-154, Lecture Notes in Comput. Sci., 1046, Springer, Berlin, 1996. Math. Rev. 98h:68188.
FORMULA
a(A091072(n)-1) = 0; a(A091067(n)-1) = 1. - Reinhard Zumkeller, Sep 28 2011 [Adjusted to match offset by Peter Munn, Jul 01 2022]
a(n) = (1-Jacobi(-1,n+1))/2 (cf. A034947). - N. J. A. Sloane, Jul 27 2012 [Adjusted to match offset by Peter Munn, Jul 01 2022]
Set a=0, b=1, S(0)=a, S(n+1) = S(n)aF(S(n)), where F(x) reverses x and then interchanges a and b; sequence is limit S(infinity).
a((2*n+1)*2^p-1) = n mod 2, p >= 0. - Johannes W. Meijer, Jan 28 2013
MAPLE
nmax:=92: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := n mod 2 od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 28 2013
# second Maple program:
a:= proc(n) option remember;
`if`(n::even, irem(n/2, 2), a((n-1)/2))
end:
seq(a(n), n=0..92); # Alois P. Heinz, Jun 27 2022
MATHEMATICA
a[n_ /; Mod[n, 4] == 0] = 0; a[n_ /; Mod[n, 4] == 2] = 1; a[n_ /; Mod[n, 2] == 1] := a[n] = a[(n - 1)/2]; Table[a[n], {n, 0, 92}] (* Jean-François Alcover, May 17 2011 *)
PROG
(Haskell)
a014707 n = a014707_list !! n
a014707_list = f 0 $ cycle [0, 0, 1, 0] where
f i (x:_:xs) = x : a014707 i : f (i+1) xs
-- Reinhard Zumkeller, Sep 28 2011
(Python)
def A014707(n):
s = bin(n+1)[2:]
m = len(s)
i = s[::-1].find('1')
return int(s[m-i-2]) if m-i-2 >= 0 else 0 # Chai Wah Wu, Apr 08 2021
(PARI) a(n)=n+=1; my(h=bitand(n, -n)); n=bitand(n, h<<1); n!=0; \\ Joerg Arndt, Apr 09 2021
CROSSREFS
Equals 1 - A014577, which see for further references. Also a(n) = A038189(n+1).
The following are all essentially the same sequence: A014577, A014707, A014709, A014710, A034947, A038189, A082410.
Sequence in context: A131378 A354029 A189624 * A288213 A308187 A289007
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Scott C. Lindhurst (ScottL(AT)alumni.princeton.edu)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 10:17 EST 2023. Contains 367560 sequences. (Running on oeis4.)