login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014709
The regular paper-folding (or dragon curve) sequence.
9
1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1
OFFSET
0,3
COMMENTS
Over the alphabet {a,b} this is aabaabbaaabbabbaaabaabbbaabbabbaaaba...
With offset 1, completely multiplicative modulo 3. - Peter Munn, Jun 20 2022
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 155, 182.
G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
LINKS
Gabriele Fici and Luca Q. Zamboni, On the least number of palindromes contained in an infinite word, Theoretical Computer Science, Volume 481, 2013, pp. 1-8. See page 1.
FORMULA
Set a=1, b=2, S(0)=a, S(n+1) = S(n)aF(S(n)), where F(x) reverses x and then interchanges a and b; sequence is limit S(infinity).
a(4n) = 1, a(4n+2) = 2, a(2n+1) = a(n).
a(n) = (3-jacobi(-1,n+1))/2 (cf. A034947). - N. J. A. Sloane, Jul 27 2012 [index adjusted by Peter Munn, Jun 22 2022]
a(n) = 1 + A065339(n+1) mod 2. - Peter Munn, Jun 20 2022
MATHEMATICA
(3 - JacobiSymbol[-1, Range[100]])/2 (* Paolo Xausa, May 26 2024 *)
PROG
(PARI) a(n)=if(n%2==0, 1+bitand(1, n\2), a(n\2) );
for(n=0, 122, print1(a(n), ", "))
CROSSREFS
See A014577 for more references and more terms.
The following are all essentially the same sequence: A014577, A014707, A014709, A014710, A034947, A038189, A082410. - N. J. A. Sloane, Jul 27 2012
Cf. A065339.
Sequence in context: A079882 A362415 A317335 * A278161 A069258 A273134
KEYWORD
nonn
AUTHOR
STATUS
approved