login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260394
Infinite palindromic word (a(1),a(2),a(3),...) with initial word w(1) = (0,1,1) and midword sequence (a(n)); see Comments.
5
0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1
OFFSET
1
COMMENTS
Below, w* denotes the reversal of a word w, and "sequence" and "word" are interchangable. An infinite word is palindromic if it has infinitely many initial subwords w such that w = w*.
Many infinite palindromic words (a(1),a(2),...) are determined by an initial word w and a midword sequence (m(1),m(2),...) of palindromes, as follows: for given w of length k, take w(1) = w = (a(1),a(2),...,a(k)). Form the palindrome w(2) = w(1)m(1)w(1)* by concatenating w(1), m(1), and w(1)*. Continue inductively; i.e., w(n+1) = w(n)m(n)w(n)* for all n >= 1. See A260390 for examples.
LINKS
FORMULA
a(n) = 1 - A260444(n).
EXAMPLE
w(1) = 011, the initial word.
w(2) = 0110110 ( = 011+0+110, where + = concatenation)
w(3) = w(2)+1+w(2)*
w(4) = w(3)+1+w(3)*
MATHEMATICA
u[1] = {0, 1, 1}; m[1] = {u[1][[1]]};
u[n_] := u[n] = Join[u[n - 1], m[n - 1], Reverse[u[n - 1]]];
m[k_] := {u[k][[k]]}; u[6]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 31 2015
STATUS
approved