login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260444
Infinite palindromic word (a(1),a(2),a(3),...) with initial word w(1) = (1,0,0) and midword sequence (a(n)); see A260390.
4
1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0
OFFSET
1
COMMENTS
Below, w* denotes the reversal of a word w, and "sequence" and "word" are interchangeable. An infinite word is palindromic if it has infinitely many initial subwords w such that w = w*.
Many infinite palindromic words (a(1),a(2),...) are determined by an initial word w and a midword sequence (m(1),m(2),...) of palindromes, as follows: for given w of length k, take w(1) = w = (a(1),a(2),...,a(k)). Form the palindrome w(2) = w(1)m(1)w(1)* by concatenating w(1), m(1), and w(1)*. Continue inductively; i.e., w(n+1) = w(n)m(n)w(n)* for all n >= 1. See A260390 for a guide to related sequences.
EXAMPLE
w(1) = 100, the initial word.
w(2) = 1001001 ( = 100+1+001, where + = concatenation)
w(3) = w(2)+0+w(2)*
w(4) = w(3)+1+w(3)*
MATHEMATICA
u[1] = {1, 0, 0}; m[1] = {u[1][[1]]};
u[n_] := u[n] = Join[u[n - 1], m[n - 1], Reverse[u[n - 1]]]
m[k_] := {u[k][[k]]}
v = u[6] (* A260444 *)
CROSSREFS
Cf. A260390.
Sequence in context: A245485 A068429 A285208 * A289034 A011747 A089013
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 31 2015
STATUS
approved