login
A079850
a(1) = 1 and then the smallest primes such that all a(k)-a(j) are distinct composite numbers.
3
1, 5, 11, 19, 31, 47, 71, 103, 151, 227, 277, 389, 463, 541, 599, 733, 797, 887, 1087, 1217, 1361, 1579, 1693, 1861, 2129, 2267, 2887, 3137, 3301, 3389, 3967, 4133, 4567, 4801, 5021, 5581, 5879, 6983, 7027, 7333, 8123, 8677, 8971, 9949, 10289, 10937
OFFSET
1,2
MATHEMATICA
CompositeQ[n_] := ! (Abs[n] == 1 || PrimeQ[n]); f[l_List] := Block[{pi = 1, d = Subtract @@@ Subsets[l, {2}], p}, While[p = Prime[pi]; Intersection[d, l - p] != {} || Nand @@ (CompositeQ /@ (l - p)), pi++ ]; Append[l, p]]; Nest[f, {1}, 46] (* Ray Chandler, Feb 12 2007 *)
CROSSREFS
Sequence in context: A304875 A164566 A075322 * A065995 A023245 A125003
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Feb 18 2003
EXTENSIONS
Extended by Ray Chandler, Feb 12 2007
STATUS
approved