|
|
A079853
|
|
Primes p for which (p-2)! == 1 (mod p^2).
|
|
6
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
These are generalized Wilson primes of order 2. Similarly to Wilson's theorem which states that (p-1)! == -1 (mod p) for every prime p>=n, we can prove that (n-1)!(p-n)! == (-1)^n (mod p) for every prime p. Generalized Wilson primes p of order n satisfy the recurrence (n-1)!(p-n)! == (-1)^n (mod p^2). Cf. A128666
Also, near-Wilson primes with Wilson quotient modulo p equals 1: prime p=prime(n) is in this sequence iff A002068(n) == A007619(n) == 1 (mod p).
Zhi-Wei SUN conjectures that for n>1, a(n) == 3 (mod 8). (Posting to the Number Theory Mailing List, Nov 02 2009; added by N. J. A. Sloane, Nov 02 2009)
No other terms below 4*10^11.
Conjecture: primes p such that Sum_{k=1..p-1} k^(1-p) == -1 (mod p^2) are the odd terms of this sequence. - Thomas Ordowski, Jul 02 2020
|
|
LINKS
|
Table of n, a(n) for n=1..5.
Wikipedia, Near-Wilson primes
|
|
MAPLE
|
A079853:= proc(i, q)
local n;
for n from 0 to i do
if isprime(n) then if frac(((n-1)!+1+q*n)/n^2)=0 then print(n); fi; fi;
od; end:
A079853(10000, -1); # Paolo P. Lava, Dec 19 2012
|
|
MATHEMATICA
|
Select[Prime[Range[700]], Mod[(#-2)!, #^2]==1&] (* Harvey P. Dale, Jun 01 2014 *)
|
|
PROG
|
(PARI) forprime(n=2, 10^9, if(Mod((n-2)!, n^2)==1, print1(n, ", "))) \\ Felix Fröhlich, Jun 17 2014
|
|
CROSSREFS
|
Cf. A002068, A007619, A128666.
Sequence in context: A225603 A292710 A300898 * A358602 A050721 A058114
Adjacent sequences: A079850 A079851 A079852 * A079854 A079855 A079856
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Pavlos Saridis (pavlos19(AT)yahoo.com), Sep 13 2003
|
|
EXTENSIONS
|
Edited by Max Alekseyev, Jan 28 2012
|
|
STATUS
|
approved
|
|
|
|