login
a(1) = 1 and then the smallest primes such that all a(k)-a(j) are distinct composite numbers.
3

%I #14 Oct 01 2020 12:55:56

%S 1,5,11,19,31,47,71,103,151,227,277,389,463,541,599,733,797,887,1087,

%T 1217,1361,1579,1693,1861,2129,2267,2887,3137,3301,3389,3967,4133,

%U 4567,4801,5021,5581,5879,6983,7027,7333,8123,8677,8971,9949,10289,10937

%N a(1) = 1 and then the smallest primes such that all a(k)-a(j) are distinct composite numbers.

%H Zak Seidov, <a href="/A079850/b079850.txt">Table of n, a(n) for n = 1..200</a>

%t CompositeQ[n_] := ! (Abs[n] == 1 || PrimeQ[n]);f[l_List] := Block[{pi = 1, d = Subtract @@@ Subsets[l, {2}], p},While[p = Prime[pi]; Intersection[d, l - p] != {} || Nand @@ (CompositeQ /@ (l - p)), pi++ ];Append[l, p]];Nest[f, {1}, 46] (* _Ray Chandler_, Feb 12 2007 *)

%Y Cf. A066720, A079852.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Feb 18 2003

%E Extended by _Ray Chandler_, Feb 12 2007