login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125003
a(0) = 0, a(1) = 5; for n>1, a(n) is determined by the rule that the concatenation of the leading terms of the difference triangle is the same as the concatenation of the digits of the sequence.
3
0, 5, 11, 19, 31, 59, 137, 337, 795, 1767, 3759, 7813, 16097, 33075, 67793, 138347, 280677, 566041, 1136129, 2274529, 4554047, 9143516, 18450225, 37464726, 76561127, 157278265, 324136399, 668557741, 1376893670, 2826272837
OFFSET
0,2
COMMENTS
a(0) = 0, a(1) = 5; binomial transform of sequence gives successive digits of sequence.
LINKS
EXAMPLE
Triangle of successive differences begins:
0...5...11...19....31....59....137...337...795....
..5...6....8....12....28....78....200...458
....1....2....4....16....50....122...258
......1....2....12....34....72....136
.........1...10....22....38....64
...........9....12....16....26
..............3.....4....10
.................1.....6
....................5
MAPLE
revert := proc(n) local Linv, i, L ; L := convert(n, base, 10) ; Linv := [] ; for i from 1 to nops(L) do Linv := [op(Linv), op(-i, L)] ; od ; RETURN(Linv) ; end: A125003 := proc(nmax) local ldigs, T, diag, row ; T := array(1..nmax, 1..nmax) ; ldigs := [0, 5, 1, 1] ; T[1, 1] := ldigs[1] ; T[1, 2] := ldigs[2] ; T[2, 1] := ldigs[2] ; for diag from 3 to nmax do T[diag, 1] := ldigs[diag] ; for row from diag-1 to 1 by -1 do T[row, diag-row+1] := T[row, diag-row]+T[row+1, diag-row] ; od ; if diag > 3 then ldigs := [op(ldigs), op(revert(T[1, diag])) ] ; fi ; od ; RETURN(T) ; end : nmax := 50 : T := A125003(nmax) : for i from 1 to nmax do printf("%d, ", T[1, i]) ; od ; # R. J. Mathar, Jan 10 2007
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Eric Angelini, Jan 06 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 10 2007
STATUS
approved