login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079848 Smallest primes such that a(j) - a(k) are all different. 5
2, 3, 5, 11, 23, 37, 47, 97, 101, 149, 211, 233, 353, 383, 487, 641, 757, 797, 919, 1097, 1163, 1381, 1409, 1481, 1777, 1997, 2287, 2417, 2969, 3049, 3371, 3529, 3929, 4231, 4759, 5279, 5449, 5717, 5953, 6529, 6983, 7583, 8053, 8819, 9043, 10133, 10799 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is the slowest-growing prime B2 sequence. See A005282. - T. D. Noe, Mar 24 2007

LINKS

T. D. Noe, Table of n, a(n) for n=1..4084 (terms less than 2*10^9)

MATHEMATICA

terms = 100; a = Table[0, {terms}]; s={}; k=0; A079848list = Reap[For[p=2, p < 10^5, p = NextPrime[p], j=1; While[j <= k && FreeQ[s, p-a[[j]]], j++]; If[j>k, For[j=1, j <= k, j++, s = Union[s, {p-a[[j]]}]]; k++; a[[k]] = p; Print[p]; Sow[p]; If[k == terms, Break[]]]]][[2, 1]]; (* Jean-Fran├žois Alcover, Nov 02 2016, adapted from Max Alekseyev's PARI code *)

PROG

(PARI) a=vector(100); s=Set(); k=0; forprime(p=2, 10^5, j=1; while(j<=k&&!setsearch(s, p-a[j]), j++); if(j>k, for(j=1, k, s=setunion(s, [p-a[j]])); k++; a[k]=p; print1(" ", p); if(k==100, break))) \\ Max Alekseyev, Feb 14 2005

CROSSREFS

Cf. A079849.

Sequence in context: A215714 A038905 A019405 * A329749 A237810 A073434

Adjacent sequences:  A079845 A079846 A079847 * A079849 A079850 A079851

KEYWORD

nice,nonn

AUTHOR

Amarnath Murthy, Feb 18 2003

EXTENSIONS

More terms from Max Alekseyev, Feb 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 16:15 EDT 2021. Contains 348068 sequences. (Running on oeis4.)