The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066720 The greedy rational packing sequence: a(1) = 1; for n > 1, a(n) is smallest number such that the ratios a(i)/a(j) for 1 <= i < j <= n are all distinct. 8
 1, 2, 3, 5, 7, 8, 11, 13, 17, 18, 19, 23, 29, 31, 37, 41, 43, 47, 50, 53, 59, 60, 61, 67, 71, 73, 79, 81, 83, 89, 97, 98, 101, 103, 105, 107, 109, 113, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sequence was apparently invented by Jeromino Wannhoff - see the Rosenthal link. If you replace the word "ratio" with "difference" and start from 1 using the same greedy algorithm you get A005282. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 15, 2002 Does every rational number appear as a ratio? See A066657, A066658. LINKS David Applegate, First 48186 terms of A066721 and their factorizations (implies first 8165063 terms of current sequence) Rainer Rosenthal, Posting to de.rec.denksport, Jan 15 2002 Robert E. Sawyer, Is there such a sequence? Posting by r.e.s. to sci.math newsgroup, Jan 13, 2002 MATHEMATICA s={1}; xok := Module[{}, For[i=1, i<=n, i++, For[j=1; k=Length[dl=Divisors[s[[i]]x]], j<=k, j++; k--, If[MemberQ[s, dl[[j]]]&&MemberQ[s, dl[[k]]], Return[False]]]]; True]; For[n=1, True, n++, Print[s[[n]]]; For[x=s[[n]]+1, True, x++, If[xok, AppendTo[s, x]; Break[]]]] (* Dean Hickerson *) a = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, b = c = Table[a[i], {i, 1, n - 1}], d}, While[c = Append[b, k]; Length[ Union[ Flatten[ Table[ c[[i]]/c[[j]], {i, 1, n}, {j, 1, n}]]]] != n^2 - n + 1, k++ ]; Return[k]]; Table[ a[n], {n, 1, 75} ] (* Robert G. Wilson v *) PROG (PARI) {a066720(m) = local(a, rat, n, s, new, b, i, k, j); a=[]; rat=Set([]); n=0; s=0; while(s

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 06:25 EDT 2020. Contains 336422 sequences. (Running on oeis4.)