|
|
A077594
|
|
Smallest number whose Reverse and Add! trajectory (presumably) contains exactly n palindromes, or -1 if there is no such number.
|
|
17
|
|
|
196, 89, 49, 18, 9, 14, 7, 6, 3, 4, 2, 1, 10000, -1, -1, -1, -1, -1, -1, -1, -1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Conjecture 1: For each k > 0 the trajectory of k eventually leads to a term in the trajectory of some j which belongs to A063048, i.e. whose trajectory (presumably) never leads to a palindrome. Conjecture 2: There is no k > 0 such that the trajectory of k contains more than twelve palindromes, i.e. a(n) = -1 for n > 12.
|
|
LINKS
|
|
|
EXAMPLE
|
a(9) = 4 since the trajectory of 4 contains the nine palindromes 4, 8, 77, 1111, 2222, 4444, 8888, 661166, 3654563 and at 7309126 joins the trajectory of 10577 = A063048(6) and no m < 4 contains exactly nine palindromes.
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|