OFFSET
0,1
COMMENTS
Conjecture 1: For each k > 0 the trajectory of k eventually leads to a term in the trajectory of some j which belongs to A063048, i.e. whose trajectory (presumably) never leads to a palindrome. Conjecture 2: There is no k > 0 such that the trajectory of k contains more than twelve palindromes, i.e. a(n) = -1 for n > 12.
EXAMPLE
a(9) = 4 since the trajectory of 4 contains the nine palindromes 4, 8, 77, 1111, 2222, 4444, 8888, 661166, 3654563 and at 7309126 joins the trajectory of 10577 = A063048(6) and no m < 4 contains exactly nine palindromes.
CROSSREFS
KEYWORD
base,sign
AUTHOR
Klaus Brockhaus, Nov 08 2002
STATUS
approved