login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077596
Central coefficients of Moebius polynomials (A074586): coefficient of x^(n/2-1/2) if n is odd; coefficient of x^(n/2-1) if n is even and >4. The n-th Moebius polynomial, M(n,x), satisfies M(n,-1)=mu(n) the Moebius function of n.
6
1, 2, 4, 8, 15, 30, 57, 108, 206, 393, 752, 1439, 2772, 5334, 10327, 19967, 38808, 75319, 146844, 285862, 558723, 1090370, 2135551, 4176224, 8193490, 16050930, 31537017, 61872863, 121721157, 239115024, 470918888, 926141652, 1825708221
OFFSET
1,2
COMMENTS
These terms seem to be asymptotic to c*2^n/sqrt(n) with c=1.2208..
c = 1.220916104316909855089768170983761594215082355524... . - Vaclav Kotesovec, Feb 11 2015
EXAMPLE
These are the largest coefficients of the Moebius polynomials, which begin:
M(1,x) = 1;
M(2,x) = 1 + 2x;
M(3,x) = 1 + 4x + 2x^2;
M(4,x) = 1 + 7x + 8x^2 + 2x^3;
M(5,x) = 1 + 9x +15x^2 +10x^3 + 2x^4;
M(6,x) = 1 +13x +30x^2 +27x^3 +12x^4 + 2x^5;
M(7,x) = 1 +15x +43x^2 +57x^3 +39x^4 +14x^5 + 2x^6;
M(8,x) = 1 +19x +67x^2+108x^3 +98x^4 +53x^5 +16x^6 + 2x^7; ...
MATHEMATICA
m[n_, 1] = 1; m[n_, k_] := m[n, k] = Sum[Floor[n/j]*m[j, k - 1], {j, 1, n - 1}];
a[n_ /; n <= 4] := 2^(n - 1); a[n_?OddQ] := m[n, (n + 1)/2]; a[n_?EvenQ] := m[n, n/2]; Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Jun 18 2013 *)
KEYWORD
nonn
AUTHOR
Benoit Cloitre and Paul D. Hanna, Nov 10 2002
STATUS
approved