login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065001 a(n) = (presumed) number of palindromes in the 'Reverse and Add!' trajectory of n, or -1 if this number is not finite. 17
11, 10, 8, 9, 10, 7, 6, 8, 4, 9, 9, 6, 7, 5, 5, 7, 6, 3, 4, 8, 6, 8, 5, 5, 7, 6, 3, 4, 4, 6, 7, 5, 6, 7, 6, 3, 4, 4, 4, 7, 5, 5, 7, 7, 3, 4, 4, 4, 2, 5, 5, 7, 6, 3, 5, 4, 4, 2, 6, 5, 7, 6, 3, 4, 4, 5, 2, 6, 3, 7, 6, 3, 4, 4, 4, 2, 7, 3, 5, 6, 3, 4, 4, 4, 2, 6, 3, 6, 1, 3, 4, 4, 4, 2, 6, 3, 5, 1, 3, 8, 8, 6, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Presumably a(196) = 0 (see A016016). Conjecture: There is no n > 0 such that the trajectory of n contains an infinite number of palindromes; the trajectory of n eventually leads to a term in the trajectory of some integer k which belongs to sequence A063048, i.e. whose trajectory (presumably) never leads to a palindrome.
LINKS
EXAMPLE
8, 77, 1111, 2222, 4444, 8888, 661166, 3654563 are the eight palindromes in the trajectory of 8 and 3654563 + 3654563 = 7309126 is the sixth term in the trajectory of 10577 (see A063433) which (presumably) never leads to a palindrome (see A063048), so a(8) = 8.
PROG
(ARIBAS): maxarg := 120; stop := 500; for k := 1 to maxarg do n := k; count := 0; c := 0; while c < stop do if n = int_reverse(n) then inc(count); c := 0; end; inc(c); n := n + int_reverse(n); end; write(count, " " ); end; .
CROSSREFS
Sequence in context: A078200 A105034 A324153 * A022967 A023453 A261304
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Nov 01 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 03:07 EDT 2024. Contains 375857 sequences. (Running on oeis4.)