

A065003


Not McNugget numbers.


3



1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A McNugget number has the form 6x + 9y + 20z for nonnegative integers x, y, z.
A214772(a(n)) = 0.  Reinhard Zumkeller, Jul 28 2012


REFERENCES

Eric Weisstein, Concise Encyclopedia of Mathematics, p. 1151.


LINKS

Table of n, a(n) for n=1..22.
Agustín Moreno Cañadas, Juan David Camacho, and Isaías David Marín Gaviria, Relationships Between Mutations of Brauer Configuration Algebras and Some Diophantine Equations, arXiv:2105.11529 [math.RT], 2021, see p. 2.
Scott Chapman, Christopher O'Neill, Factoring in the Chicken McNugget monoid, arXiv:1709.01606 [math.AC], 2017.
James Grime and Brady Haran, How to order 43 Chicken McNuggets, Numberphile video (2012)
C. U. Jensen and A. Thorup, Gorenstein orders, Journal of Pure and Applied Algebra, Volume 219, Issue 3, March 2015, Pages 551562. See Example 7.1.  N. J. A. Sloane, Jul 22 2014
Eric Weisstein's World of Mathematics, McNugget Numbers.
Wikipedia, Coin problem


MATHEMATICA

Select[Range[43], Length@FrobeniusSolve[{6, 9, 20}, #] == 0 &] (* Arkadiusz Wesolowski, Feb 20 2013 *)


PROG

(Haskell)
import Data.List (elemIndices)
a065003 n = a065003_list !! n
a065003_list = elemIndices 0 $ map a214772 [0..43]
 Reinhard Zumkeller, Jul 28 2012
(PARI) is(n)=forstep(k=n, 6, 20, if(k%3==0, return(0))); n%20>0 \\ Charles R Greathouse IV, May 05 2013


CROSSREFS

Cf. A214777 (complement).
Sequence in context: A261131 A225061 A133223 * A189729 A287549 A347655
Adjacent sequences: A065000 A065001 A065002 * A065004 A065005 A065006


KEYWORD

easy,fini,full,nonn


AUTHOR

Karl Sabbagh (karl.sabbagh(AT)btinternet.com), Nov 01 2001


STATUS

approved



