login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076976
Product of the smallest prime divisors of composite numbers between successive primes.
3
1, 2, 2, 12, 2, 12, 2, 12, 120, 2, 120, 12, 2, 12, 168, 120, 2, 120, 12, 2, 168, 12, 120, 1680, 12, 2, 12, 2, 12, 2217600, 12, 168, 2, 15840, 2, 120, 168, 12, 312, 120, 2, 15840, 2, 12, 2, 221760, 262080, 12, 2, 12, 120, 2, 18720, 264, 168, 120, 2, 120, 12, 2, 34272
OFFSET
1,2
COMMENTS
From Bernard Schott, Apr 09 2020: (Start)
a(n) = 2 iff prime(n) is in A001359 (prime gap=2).
a(n) = 12 iff prime(n) is in A029710 (prime gap=4).
a(n) = 24 * p with p prime >= 5 iff prime(n) is in A031924 (prime gap=6).
a(n) = 2^m * q with q odd >= 3 iff prime(n+1) - prime(n) = 2*m where m = A007814(a(n)). (End)
LINKS
MAPLE
p:= 2:
for i from 1 to 100 do
q:= p; p:= nextprime(p);
A[i]:= mul(min(numtheory:-factorset(i)), i=q+1..p-1);
od:
seq(A[i], i=1..100); # Robert Israel, Mar 30 2020
MATHEMATICA
pspd[{p1_, p2_}]:=Times@@(FactorInteger[#][[1, 1]]&/@Range[p1+1, p2-1]); pspd/@Partition[ Prime[Range[70]], 2, 1] (* Harvey P. Dale, Jan 12 2024 *)
PROG
(PARI) a(n) = {my(p=1, pn=prime(n)); forcomposite(c=pn, nextprime(pn+1)-1, p *= vecmin(factor(c)[, 1]); ); p; } \\ Michel Marcus, Mar 31 2020
CROSSREFS
Cf. A029707 (a(n)=2), A029709 (a(n)=12), A076977.
Sequence in context: A095215 A264712 A217094 * A291757 A286464 A058044
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Oct 23 2002
EXTENSIONS
More terms from Sascha Kurz, Jan 22 2003
STATUS
approved