Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jan 12 2024 17:42:05
%S 1,2,2,12,2,12,2,12,120,2,120,12,2,12,168,120,2,120,12,2,168,12,120,
%T 1680,12,2,12,2,12,2217600,12,168,2,15840,2,120,168,12,312,120,2,
%U 15840,2,12,2,221760,262080,12,2,12,120,2,18720,264,168,120,2,120,12,2,34272
%N Product of the smallest prime divisors of composite numbers between successive primes.
%C From _Bernard Schott_, Apr 09 2020: (Start)
%C a(n) = 2 iff prime(n) is in A001359 (prime gap=2).
%C a(n) = 12 iff prime(n) is in A029710 (prime gap=4).
%C a(n) = 24 * p with p prime >= 5 iff prime(n) is in A031924 (prime gap=6).
%C a(n) = 2^m * q with q odd >= 3 iff prime(n+1) - prime(n) = 2*m where m = A007814(a(n)). (End)
%H Robert Israel, <a href="/A076976/b076976.txt">Table of n, a(n) for n = 1..10000</a>
%p p:= 2:
%p for i from 1 to 100 do
%p q:= p; p:= nextprime(p);
%p A[i]:= mul(min(numtheory:-factorset(i)),i=q+1..p-1);
%p od:
%p seq(A[i],i=1..100); # _Robert Israel_, Mar 30 2020
%t pspd[{p1_,p2_}]:=Times@@(FactorInteger[#][[1,1]]&/@Range[p1+1,p2-1]); pspd/@Partition[ Prime[Range[70]],2,1] (* _Harvey P. Dale_, Jan 12 2024 *)
%o (PARI) a(n) = {my(p=1, pn=prime(n)); forcomposite(c=pn, nextprime(pn+1)-1, p *= vecmin(factor(c)[,1]);); p;} \\ _Michel Marcus_, Mar 31 2020
%Y Cf. A029707 (a(n)=2), A029709 (a(n)=12), A076977.
%Y Cf. A001359, A029710, A031924.
%K nonn
%O 1,2
%A _Amarnath Murthy_, Oct 23 2002
%E More terms from _Sascha Kurz_, Jan 22 2003