The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076978 Product of the distinct primes dividing the product of composite numbers between consecutive primes. 4
 1, 2, 6, 30, 6, 210, 6, 2310, 2730, 30, 39270, 7410, 42, 7590, 46410, 1272810, 30, 930930, 82110, 6, 21111090, 1230, 48969690, 1738215570, 2310, 102, 144690, 6, 85470, 29594505363092670, 16770, 49990710, 138, 7849357706190, 30, 300690390, 20223210, 1122990, 37916970 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, the largest squarefree number that divides the product of composite numbers between successive primes. From Robert G. Wilson v, Dec 02 2020: (Start) All terms greater than one are even. Omega(a(n)): 0, 1, 2, 3, 2, 4, 2, 5, 5, 3, 6, 5, 3, 5, 6, 7, 3, 7, 6, 2, 8, 4, 8, 9, 5, ..., . Records: 1, 2, 6, 30, 210, 2310, 2730, 39270, 46410, 1272810, 21111090, ..., . Factored: 1, 2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11, 2*3*5*7*13, 2*3*5*7*11*17, 2*3,*5*7*13*17, 2*3*5*7*11*19*29, ..., . (End) LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..10000 EXAMPLE a(4) = product of prime divisors of the product of composite numbers between 7 and 11 = 2 * 3 * 5 = 30. a(5)=6 because 12 is the only composite number between the 5th and the 6th primes (11 and 13) and largest squarefree divisor of 12 is 6. MAPLE with(numtheory): b:=proc(j) if issqrfree(j) then j else fi end: a:=proc(n) local B, BB: B:=divisors(product(i, i=ithprime(n)+1..ithprime(n+1)-1)): BB:=(seq(b(B[j]), j=1..nops(B))): max(BB); end: seq(a(n), n=1..33); # Emeric Deutsch, Jul 28 2006 MATHEMATICA f[n_] := Times @@ (First@# & /@ FactorInteger[Times @@ Range[Prime[n] + 1, Prime[n + 1] - 1]]);  Array[f, 50] (* Robert G. Wilson v, Dec 02 2020 *) CROSSREFS Cf. A074167. Sequence in context: A330648 A074168 A079615 * A117213 A127797 A338441 Adjacent sequences:  A076975 A076976 A076977 * A076979 A076980 A076981 KEYWORD nonn AUTHOR Amarnath Murthy, Oct 23 2002 EXTENSIONS More terms from Emeric Deutsch, Jul 28 2006 More terms from Robert G. Wilson v, Dec 02 2020 Entry revised by N. J. A. Sloane, Dec 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 08:38 EDT 2021. Contains 346369 sequences. (Running on oeis4.)