login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072897
Least n-th order digital invariant which is not an Armstrong number (A005188), or 0 if no such term exists.
1
136, 2178, 58618, 63804, 2755907, 0, 144839908, 304162700, 4370652168, 0, 0, 0, 0, 0, 21914086555935085, 187864919457180831, 0, 13397885590701080090, 0, 0, 0, 19095442247273220984552, 1553298727699254868304830, 1539325689516673750004702, 242402817739393059296681797
OFFSET
3,1
COMMENTS
An n-th order digital invariant is a number such that the sum of the n-th powers of the digits of n equals some number k and the sum of the n-th powers of the digits of k equals n. An Armstrong number is where n = k.
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124, 155.
LINKS
Tim Johannes Ohrtmann, Table of n, a(n) for n = 3..45
Eric Weisstein's World of Mathematics, Invariant.
MATHEMATICA
Do[k = 1; While[ !(Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[k]^n]]^n] == k && Apply[Plus, IntegerDigits[k]^n] != k), k++ ]; Print[k], {n, 3, 7}]
CROSSREFS
Sequence in context: A015163 A235190 A249985 * A254703 A333110 A250424
KEYWORD
hard,nonn,base
AUTHOR
Robert G. Wilson v, Aug 09 2002
EXTENSIONS
a(8)-a(27) from Tim Johannes Ohrtmann, Aug 27 2015
STATUS
approved