login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254703
Number of length 5+4 0..n arrays with every five consecutive terms having the maximum of some two terms equal to the minimum of the remaining three terms.
1
136, 2310, 16276, 72271, 242076, 670372, 1618264, 3520845, 7060672, 13259026, 23586828, 40097083, 65580724, 103747728, 159435376, 238845529, 349812792, 502105438, 707760964, 981458151, 1340927500, 1807401916, 2406109512
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (13/35)*n^7 + (13/2)*n^6 + 26*n^5 + 41*n^4 + (327/10)*n^3 + (39/2)*n^2 + (125/14)*n + 1.
Conjectures from Colin Barker, Dec 17 2018: (Start)
G.f.: x*(136 + 1222*x + 1604*x^2 - 873*x^3 - 204*x^4 - 20*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..0....3....1....0....3....3....0....0....4....2....2....1....2....1....0....2
..3....2....3....4....1....3....2....3....3....2....1....3....3....4....2....1
..1....3....0....2....1....3....1....0....3....2....1....2....2....4....1....2
..1....1....0....3....2....3....3....0....3....3....1....2....0....1....4....1
..4....2....0....2....1....3....1....0....1....3....1....4....4....1....1....1
..0....3....1....2....3....0....1....0....4....2....3....2....2....1....0....0
..2....2....0....4....1....3....4....2....3....2....1....2....3....1....1....2
..1....3....0....2....1....3....1....0....4....2....0....3....2....4....1....1
..1....2....3....1....0....4....1....4....3....1....3....0....2....0....1....4
CROSSREFS
Row 5 of A254698.
Sequence in context: A235190 A249985 A072897 * A333110 A250424 A251940
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 05 2015
STATUS
approved