OFFSET
1,1
COMMENTS
Table starts
...22...133.....464.....1205.....2606......4977......8688......14169......21910
...34...267....1116.....3341.....8142.....17255.....33048......58617......97882
...54...552....2764.....9507....25962.....60634....126456.....242037.....433054
...86..1140....6808....26759....81390....208114....469376.....962541....1831798
..136..2310...16276....72271...242076....670372...1618264....3520845....7060672
..212..4542...37204...183491...665256...1961608...4985336...11325573...23567212
..334..9106...87892...489135..1954106...6255136..17080712...41376909...91273510
..532.18498..211672..1335839..5903724..20574928..60483408..156403629..365868388
..852.37742..512684..3667545.17914000..67894218.214599288..591634473.1465804300
.1367.77010.1241154.10039379.54038937.222047516.752272724.2204108901.5765156683
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 15]
k=2: [order 49]
k=3: [order 83]
Empirical for row n:
n=1: a(n) = (5/2)*n^4 + (20/3)*n^3 + (15/2)*n^2 + (13/3)*n + 1
n=2: a(n) = (4/5)*n^5 + (19/3)*n^4 + (34/3)*n^3 + (29/3)*n^2 + (73/15)*n + 1
n=3: [polynomial of degree 6]
n=4: [polynomial of degree 7]
n=5: [polynomial of degree 7]
n=6: [polynomial of degree 7]
n=7: [polynomial of degree 8]
EXAMPLE
Some solutions for n=4 k=4
..1....2....3....2....0....3....4....0....3....4....4....1....3....4....4....2
..0....0....0....2....4....0....2....4....1....0....3....4....3....1....1....3
..4....2....2....3....0....4....3....1....1....4....3....0....0....0....3....4
..1....2....2....2....3....2....4....1....3....2....3....1....2....0....3....3
..3....3....2....4....0....2....3....1....1....2....1....1....2....0....3....3
..1....3....4....2....0....4....3....2....1....3....3....3....4....1....3....3
..1....2....0....2....0....2....3....1....0....1....3....1....2....2....3....3
..2....2....4....0....1....4....2....4....2....3....3....0....2....0....3....0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 05 2015
STATUS
approved