login
T(n,k)=Number of length n+4 0..k arrays with every five consecutive terms having the maximum of some two terms equal to the minimum of the remaining three terms
15

%I #4 Feb 05 2015 21:06:00

%S 22,133,34,464,267,54,1205,1116,552,86,2606,3341,2764,1140,136,4977,

%T 8142,9507,6808,2310,212,8688,17255,25962,26759,16276,4542,334,14169,

%U 33048,60634,81390,72271,37204,9106,532,21910,58617,126456,208114,242076

%N T(n,k)=Number of length n+4 0..k arrays with every five consecutive terms having the maximum of some two terms equal to the minimum of the remaining three terms

%C Table starts

%C ...22...133.....464.....1205.....2606......4977......8688......14169......21910

%C ...34...267....1116.....3341.....8142.....17255.....33048......58617......97882

%C ...54...552....2764.....9507....25962.....60634....126456.....242037.....433054

%C ...86..1140....6808....26759....81390....208114....469376.....962541....1831798

%C ..136..2310...16276....72271...242076....670372...1618264....3520845....7060672

%C ..212..4542...37204...183491...665256...1961608...4985336...11325573...23567212

%C ..334..9106...87892...489135..1954106...6255136..17080712...41376909...91273510

%C ..532.18498..211672..1335839..5903724..20574928..60483408..156403629..365868388

%C ..852.37742..512684..3667545.17914000..67894218.214599288..591634473.1465804300

%C .1367.77010.1241154.10039379.54038937.222047516.752272724.2204108901.5765156683

%H R. H. Hardin, <a href="/A254698/b254698.txt">Table of n, a(n) for n = 1..9999</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 15]

%F k=2: [order 49]

%F k=3: [order 83]

%F Empirical for row n:

%F n=1: a(n) = (5/2)*n^4 + (20/3)*n^3 + (15/2)*n^2 + (13/3)*n + 1

%F n=2: a(n) = (4/5)*n^5 + (19/3)*n^4 + (34/3)*n^3 + (29/3)*n^2 + (73/15)*n + 1

%F n=3: [polynomial of degree 6]

%F n=4: [polynomial of degree 7]

%F n=5: [polynomial of degree 7]

%F n=6: [polynomial of degree 7]

%F n=7: [polynomial of degree 8]

%e Some solutions for n=4 k=4

%e ..1....2....3....2....0....3....4....0....3....4....4....1....3....4....4....2

%e ..0....0....0....2....4....0....2....4....1....0....3....4....3....1....1....3

%e ..4....2....2....3....0....4....3....1....1....4....3....0....0....0....3....4

%e ..1....2....2....2....3....2....4....1....3....2....3....1....2....0....3....3

%e ..3....3....2....4....0....2....3....1....1....2....1....1....2....0....3....3

%e ..1....3....4....2....0....4....3....2....1....3....3....3....4....1....3....3

%e ..1....2....0....2....0....2....3....1....0....1....3....1....2....2....3....3

%e ..2....2....4....0....1....4....2....4....2....3....3....0....2....0....3....0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 05 2015