login
A254704
Number of length 6+4 0..n arrays with every five consecutive terms having the maximum of some two terms equal to the minimum of the remaining three terms.
1
212, 4542, 37204, 183491, 665256, 1961608, 4985336, 11325573, 23567212, 45697586, 83610924, 145721095, 243693152, 393304188, 615444016, 937266185, 1393499844, 2027932966, 2895077444, 4062026571, 5610515416, 7639194608, 10266128040
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (73/35)*n^7 + 19*n^6 + 52*n^5 + 60*n^4 + (377/10)*n^3 + 26*n^2 + (199/14)*n + 1.
Conjectures from Colin Barker, Dec 17 2018: (Start)
G.f.: x*(212 + 2846*x + 6804*x^2 + 1163*x^3 - 472*x^4 - 48*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..0....1....0....0....1....1....1....2....1....0....2....2....2....1....2....1
..4....4....1....1....2....1....0....1....4....3....2....2....0....2....1....1
..3....4....1....1....1....0....1....1....1....0....2....2....1....2....1....4
..4....2....3....1....1....2....1....2....1....0....2....2....1....4....1....4
..3....2....4....3....1....2....4....0....1....3....1....1....2....4....2....1
..1....2....1....3....2....1....1....3....1....0....3....2....1....2....4....1
..3....3....1....0....1....1....1....1....2....0....3....2....1....2....1....1
..3....0....1....1....0....1....3....1....0....1....2....4....2....1....0....1
..4....2....1....1....1....4....0....1....1....0....2....2....1....3....1....4
..4....2....2....4....4....0....1....2....1....3....1....1....1....2....1....2
CROSSREFS
Row 6 of A254698.
Sequence in context: A356358 A232671 A082828 * A267062 A250326 A344423
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 05 2015
STATUS
approved